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A TRACE SPECIFICATION OF THE MMS SECURITY MODEL*

1 Introduction

The MMS security model presented in [Land84] is an abstract, mathematically precise specifica-
tion of the information security requirements of a multilevel secure electronic message system.
This report presents a trace specification of the basic behavior and security properties of thirty
one procedures that might form part of such a message system. These procedures are specified
in such a way as to guarantee that they satisfy the requirements of the security model presented
in [Land84], given a certain trace interpretation of the predicates found in the MMS model.

The remainder of this section contains background material and may be skimmed or skipped
by the reader who is already familiar with the trace specification language and the Hoffman
methodology.

1.1 The Trace Specification Language'I.,
The trace language provides for the specification of software modules in terms of the effects
(such as return values) that the user sees when (s)he executes a sequence of procedure and
function calls. These sequences are called traces. .The idea of basing specifications on traces
was first suggested in [Bart77] and later formalized in [McLean85]. The heuristic methodology
presented in [Hoff84] and [Hoff86] makes it easier to understand and write trace specifications,
and I will adopt that methodology here.
_ SA trace specification consists of a syntax section and a semantics section. The syntax section

states the name and parameter types of each of the module's procedures and the name, parameter
types, and return value type of each of the module's function calls The semantics section contains
axioms formalized in a two-sorted language of first-order logic'with identity, with one set of

*variables {R, R1, R2, ... S, S1 , S2 , ... T, TI, T2, ... } to be understood as ranging over traces. In
addition to the usual logical connectives there is an interpreted binary function symbol (.), which
serves as a notation for concatenating trace terms. If X is a trace variable, the empty trace e, a
procedure call, or a function call, then X is a well-formed trace term; if X and Y are trace terms,
then (X.Y) is a well-formed trace term. Nothing else is a trace term. A function (procedure) call

* is a function (procedure) name followed by the requisite number of parameters of appropriate
types. In place of a formal axiom of associativity for concatenation I adopt the convention of
dropping the parentheses around the subterms of a trace term.

Manuscript approved February 4, 1988.
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The axioms that appear in the semantics section of a trace specification state or entail infor-
mation about which traces are legal and about the values returned by legal traces that end with
function calls. The legality predicate and the value function are usually formalized using the
unary predicate symbol L and the unary function symbol V, respectively. One additional and
very handy piece of notation is trace equivalence -, defined as follows ([McLean86], p. 4):

S - T =df VR [(L(S.R) +-+ L(T.R)) A (R e +-+ (3x V(S.R) = x +-+ V(S.R) = V(T.R)))]

In other words, two traces are equivalent just in case they agree on (i) present and future legality
and (ii) all future return values. Intuitively, two traces are equivalent provided that they place
the module in the same "state," as far as the user can tell. The intuitive idea of module state
has great heuristic value and plays an important role in the Hoffman methodology, which I will
presently describe.

1.2 The Hoffman Methodology

In [Hoff84] (and in [Hoff86] with Richard Snodgrass) Daniel Hoffman describes a set of heuris-
P. tics for writing trace specifications, the most basic of which being these:'

* Base the specification on a definition of normal form traces.

.- e Structure the semantics according to normal form prefixes.

The notion of a normal form trace is based on the following concept of module state: Two
traces place the module into the same state provided that a user could not distinguish between
them by appending a series of procedure and function calls and comparing return values (and
error messages). In other words, two traces represent the same state iff they are trace-equivalent.
Normal form traces are the canonical representatives of the states of a module. They allow one to
structure a trace specification in such a way as to make explicit exactly how procedures move the
module from one state to another. Formally, a normal form for a trace specification is simply any
set of traces containing at least one trace from each equivalence class of the trace-equivalence
relation =. Every legal trace is therefore equivalent to at least one normal form trace, for any

Sgiven normal form.
* One would typically define a normal form by means of an explicit definition. For example,

in his simple stack specification Hoffman defines a trace to be in normal form iff it consists
only of push calls.2 It is also possible to define a normal form recursively. One does this in
two steps: first, by stipulating that the empty trace is in normal form; then, for each normal
form trace T and procedure call C, one states the conditions under which T.C is in normal form.

* Since one is normally interested only in legal traces, one can instead do the recursion by stating,
for each normal form trace T and procedure call C such that T.C is a legal trace, the conditions
under which T.C is a normal form trace.

Given a definition of normal form and trace-legality, the next step, according to the Hoffman
methodology, is to specify an equivalent normal form trace for each legal trace T.C such that T

f[Hoff86 1, p. 6.
2Sce [Hoff861, p. 8.

* 2
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is in normal form but T.C is not. Doing this insures that every legal trace is provably equivalent
to some normal form trace; consider an arbitrary legal trace C1.C 2 ... C.- If every legal trace
of the form T.C, where T is in normal form, is provably equivalent to some normal form trace,
then a normal form trace provably equivalent to C1.C2 ... C, can be constructed as follows: let
So = e, and if Si.Ci+i is a normal form trace and i < n, then let Si+ = Si.C,+, otherwise let
Sj.j = T, where T is a normal form trace equivalent to Si.Ci+1. Each Si is in normal form, so
there will always exist such a T. Clearly, S, is trace-equivalent to C1.C2 ... C,.

Once a normal form equivalent has been specified for each trace having a normal form prefix,
the final step is to specify the return values of all function calls. This is done by specifying the
value of every legal trace T.C, where T is any normal form trace and C is any function call.

2 The MMS model trace specification

This section begins with a discussion of the way in which normal forms and legality are defined
in the MMS model trace specification. Following this will be a discussion of the procedures
that have been specified, grouped by function, and a discussion of the predicates that define the
security properties of the MMS model.

2.1 Normal forms and legality

Normal forms and legality in the MMS model specification are defined by mutually recursive
axioms of the following form for each procedure call in the module:

nf(T) -- (L(T.(call)) - (formulal))

(nf(T) A L(T.(call))) - (nf(T.(call)) ,-+ (formula2))

where the formulas that replace (formulal)) and (formula2)) are assumed not to contain any
occurrence of the predicates nf and L. In addition, we assume that the empty trace e is a normal
form trace, that the longest proper prefix of a legal trace is legal, that every normal form trace
is legal, and that the longest proper prefix of a normal form trace is a normal form trace; i.e. we
assume:

nf(e)

N, "VC (L(T.C) , L(T))

(nf(T) - L(T))

VC (nf(T.C) -- nf(T))

These two schemata and the fouradditional axioms displayed above are sufficient to define the
legality and normal form status of every trace. To see that this is so, consider the following

. construction of the respective truth values of nf(T) and L(T) for an arbitrary trace T: If T = e,
then nf(T) and L(T) are true, and we are done. Suppose instead that T = R.C and that the truth
values of nf(R) and L(R) are known. If L(R) is false, then nf(T) and L(T) a-e both false, and we
are done. Suppose, then, that L(R) is true, and define the trace S as follows:

* 
f R, if nf(R);
.. S'. otherwise, for some S' where S' -R and nf(S').

By the axiom schemata, there exist formulas z, and \ such that the following are axioms:

* o3
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nf(S) - (L(S.C) - g)
(nf(S) A L(S.C)) -- (nf(S.C) - X)

Given these formulas the truth values of nf(T) and L(T) are determined as follows: L(T) has the
same truth value as 0, since S _= R; if L(S.C) is false, then by the equivalence of S and R, L(T)
is also false and so nf(T) is false. Suppose L(S.C) is true; if S R, then nf(R) is false and so
nf(T) is false. If S = R, then T = S.C, and so nf(T) has the same truth value as X.

This construction shows that legality and the normal form predicate are completely "defined"
in the following sense: given axioms of the sort described above as hypotheses, the truth value
of any formula of the form nf(T) or of the form L(T) is provably a function of the truth values
of formulas that do not contain the normal form and legality predicates. The construction is not
an effective procedure for deciding normal form-hood and legality, however, because 0' and
may not be decidable formulas and because the formula S' is merely chosen, not constructed.

2.2 Initializing procedures

First we consider the procedures create-user, delete-user, login, and logout; create-user is
specified as follows: 3

-,. ,.Create-user

nf(7) - [L(T.createuser(u, v, 0) -. [RO(u, T, sso) A user-exists(u, 7) A logged-in(u, T)A
-'user-exists(v, T) A ref-secure(T, create-user(u, v, ))]]

[nf(7) A L(T.create-user(u, v, 1))l -, fnf(T.create-user(u, v, , - -3u' 3R [T = R.delete-user(u', v) A CU(v, R) = IIl
[nf(7) A L(T. create-user(u, V, )) A T = R.delete-iiser(u, V) A CU(v, R) = 1] - T.create-user(u, v, 1) =_R

These formulas state the following: first, the result of appending create-user to a normal form
trace is legal if and only if: the creating user exists, is logged in, and has the role of System
Security Officer, the created user does not already exist, and the trace and procedure call also
stand in the refsecure relation, about which we shall have more to say later. If these conditions
are satisfied, then this trace, which results from appending create-user to a normal form trace
T, is itself in normal form just in case T does not end with a deletion of the soon-to-be-created

user while he has the same security clearance that he is about to be created at. The third axiom
states that if the user is redundantly deleted and then recreated at the same security clearance, it
is then as if neither operation had been performed.

Obviously, one user must exist at the beginning in order to create the others. This user is
called Root in the specification; Root exists by definition, and is defined to have the role of

- system security officer at all times.
These are the definitions of all but one of the predicates used in the specification of create-user.

(The definition of the one other predicate, ref-secure, can be found in the Appendix. Its definition
presupposes the material introduced in section 2.4.)

RO(v. 7. r) - [[v = Root A r = ssol V 3S [somenonC( 2.2)(S, addRO, rmRO, 2, v, 3, r; 2, v, 3, r, 7)A
0 -in-afteri (S. delete-user. 2, v, T)11

3For an explanation of the trace predicates used here and throughout the rest of this report. see JLand84l.
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user-exists(u, 7) - [us Root V BS some-none(,, 1)(S, create-user, delete-user, 2, us; 2, us, 7)]

W The in-.after and some-none predicates are convenient abbreviations for very long and compli-
cated fonnulas4 and will be used many times. some-none is really a family of predicates that

alwone to say that a trace contains an occurrence of a procedure call of one sort that is
not followed by an occurrence of a procedure call of a certain other sort. More specifically,

K. some-none(mn)(S. cl, c2,j1,i,....m, xm; k1 , yi.... , k,y,,, T) states that S is a prefix of T and is
followed in T by a call to procedure cl. This call has argument xi in position ji, for i from I
to ni, and there does not exist in T after S and the cal1l to cl that follows it, any occurrence of
a call to C2 having argument yi in position ki, for i from 1 to n. The predicate in-after has a
similar flavor: in-after,,(S, c, k1~, . , Xn, T) states that a call to procedure c with xi as the
kith argument, for i from 1 to n, occurs immediately after S in T, where, again S is a prefix of T.
Thevc predicates, and similar predicates discussed later on, are useful because they allow one to

specify the current value of some parameter, for example, someone's security clearance, as the
.r~ .value it was given the last time it was modified.

% ~The procedure delete-user has this specification:

Delete-user

nf(7) - [L(T.delete-user(u, v))
% ~[logged-in(u, 7) A RO(u, T, sso) A user-exists(v, 7) A ref-secure(T, delete-user(s, v'))]]

* (nf(7) A L(T.delete-user(u, v)) -~ [nf(T.dclete-user(u, v) ~- (-Bu3 S T = S.create-user(u', v)]

[nf(T) A L(T.delete-user(u, v)) A T = S.create-user(u', v)] - T.delete-user(u, v) =_]S

Note that with delete-user, as with create-user, normal form status depends on the absence of
procedure calls that immediately cancel one another out. A trace ending with a call to delete-.user
is in normal form only if its longest proper prefix does not end with a call to create-user that
creates the userid that is about to be deleted.

Next we consider the login and logout procedures. They are specified as follows:

login

nf(T) - [L(T.Iogin(u, d)) .- [-'logged-in(u, d, 7) A user-exists(U, 7) A ref-secure(T, Iogin(u, d))Jl

[ nf(I)A t.( T.Iogin(u, d))] - [nf(T.Iogin(u, d) - -lx3R T =R.Iogout(u, d)]

[nf(7) A L(T.Iogin(u, d)) A T = R.Iogout(u, d))] -- T.Iogin(u, d) =_T

logout
nf(7) - [L(T.Iogout(u, d)) - tiogged-in(u. d, 1) A -3Br 3k H(d. T, r, k) A ref-secure(T Iogout(u, d))Il

fnf(7[) A L(T Iogout(u. d))I - Inf(Tiogout(u, d)) - -IBS T = S. Iogin(u, d)]

[nf(T) A L(T ogout(u. d)) A T= S.Iogin(u. d)] - T.Iogout(u, d) =_Sl

That is, logging in at a given device d is legal only if you are not already logged in on d,

and logging in preserves normal form-hood only if you did not just logout of the same device.

'See the definitions in the appendix.

* 5
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Similarly, logging out is legal only if you are logged in, and logging out preserves normal form-
hood only if you did not just login to the same device. The property of being logged in is
specified as follows:

loggedin(u, d, 7) .-- 3R [user-exists(u, T) A some.none(2,2)(R, login, logout, 1, u, 2, d; 1, u,, 2, d, 7)]

That is, a user is logged in at a device only if there is a point in the past at which an appropriate
-, call to login was not followed by a corresponding call to logout.

2.3 Classifications and clearances

The next group of procedures that we examine are those dealing with the various security
parameters associated with users and entities. In addition to procedures that set values and
modify lists of values, there are functions, available only to a system security officer, that return
the values of security variables.

2.3.1 Setting values

Certain security parameters are single values. These are: the security clearance of a user, the
maximum classification of an output device, the actual classification of an entity, and the CCR

- value of a container. These parameters are set using the procedures set-cu, setCD, setCE, and

setCCR, respectively. The specifications for these procedures are all based on the idea that a
parameter setting procedure preserves normal form-hood if and only if it neither sets a parameter
to the value it already has nor cancels out the effect of a parameter change that has just taken
place. So we have, for example, the specification of set-cu:

..

setCU

nf(I) - [L(Tset-cu(u, v. 1)) - [RO(u, T, sso)Auser-exists(u, T)Aloggedin(u, 7)Auser-exists(v, 7)A- loggedin(v, 7)A
rcfsecurc(T. set-cu(u. v, ))]]

fnf(7) A L(T.set-cu(u, v, ))] - [nf(T.set-cu(u. v. )) - [CU(v, 7) A I A -'3S3u' 3V I3' T = S.set-cu(u', V',/1)]

[nf(T) A L(Tset-cu(u. v. )) A CU(v, 7) = 1] -- T.set-cu(u, v, 1) = T
-'.

fnf(7) A L(T.set-cu(u, v. )) A T = S.set-cu(u', V, ')] - T.set-cu(u, v,/) S.set-cu(u, v, 1)]

Note the last two formulas in the specification. They specify different normal form equivalents

I. for the trace T.set-cu(u, v. 1) depending on the particular way in which it fails to be in normal
:',.form.

.. ' Procedures that manipulate the security properties of entities are specified in much the same

,.. way. Since trace specifications give the user's view of procedure behavior, we will specify the
A security parameters of entities as properties of the references that refer to them. We begin with

- 4 setCD, a procedure for setting the maximum classification of information allowed to appear on
.: a given output device.

seL-CD" nf(7) - [L(T setCD(u. d. 1))
[loggedin(u. 7) A RO(u. T. sso) A CE(d, 7) < I A device(d) A reLsecure(T. setCD(u, d, 1))]]

,.:.
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[nf(T) ,A L(T.setCD(u, d, 1))] - [nf(T.setCD(u, d, I)) - [-3Bu' 31' 3S T = S.setCD(u, d, I')A
VCVR[[lprefix(R.C, 7) A callname(C) = setCD A coref(arg(C,2),R,d,)] -- [arg(C,2) I V3C'3S[callname(C') =

setCD A coref(rg(C, 2). S, d. 7) A prefix(R.C, S.C') A arg(C', 2) A/ T]]]
[nf(7) A L(T.setCD(u, d, 1)) A T = S.setCD(u', d, ')] - T.setCD(u, d, _ S.setCD(u, d. 1)

[nf(T)AL(T.set_CD(u, d, ))A3C 3R [prefix(R.C, 7)Acallname(C) = setCD Acoref(arg(C, 2), R, d, 7)Aarg(C, 2) = I A
A -3C' 3S [callname(C') = setCD Acoref(arg(C', 2), S, d, 7)Aprefix(R.C, S.C')Aarg(C', 2) $/T]] - T.setCD(u, d,/) =

T

The very complicated looking second formula in the specification for this procedure can be
explained as follows: a legal call to setCD preserves normal form-hood just in case (i) it does
not immediately cancel the effect of another setCD call, and (ii) any previous setCD call
that set the maximum classification of the device to the same level that this call sets it to was
cancelled by a subsequent seLCD call setting it to a different classification. In case (i) fails, the
trace is equivalent (by the third formula) to the result of deleting the setCD call whose effect
was cancelled. If (ii) fails, the the trace is equivalent (by the fourth formula) to the result of
deleting the final setCD call.

The four-place relation coref appears for the first time in the specification of this procedure.
Its intended meaning is this: coref(ri, S, r2, T) states that r, refers at S to the same entity that r2

refers to at T. This predicate will be discussed further in the section on references.
The specification of setCE is very similar to that of setCD:

setCE

nf(T) - [L(T.setCE(u, d, 1)) -

[loggedin(u, 7) A AS(u, setCE, d, 2, 7) A device(d) A 1 < CD(d, 7) A ref-secure(T, setCE(u, d, 1))]]

[nf(T) A L(T.setCE(u, d, 1))] - [nf(T.set_CE(u, d, )) ,- [-3u' 31' 3S T = S.setCE(u', d, 1')A
VCVR [[prefix(R.C, 7) A callname(C) = setCE A coref(arg(C, 2), R, d, 7)] - [arg(C, 2) A I V BC' 3S callname(C)=
setCE A coref(arg(C', 2), S, d, 7) A prefix(R.C, S.C') A arg(C', 2) A fl]]]

[nf(7) A L(T.setCE(u, d, 1)) A T = S.setCE(u', d, 1')] - T.setCE(u, d, 1) S.setCE(u, d, )

[nf(7)A L(T.setCE(u, d, /))A 3C3R [prefix(R.C. 7)Acallname(C) = setCE Acoref(arg(C, 2), R. d. 7)A arg(C, 2) = IA

-3C' 3S [callname(C') = setCE Acoref(arg(C, 2), S, d, T)Aprefix(R.C, S.C')Aarg(C', 2) $/]]] - T.setCE(u, d, 1)

T

Since users other than the system security officer may be authorized to set the classification of a
S particular entity, we need a way of specifying which users those are. This is done in the MMS

model by means of the predicate AS, defined here as follows:

AS(v, c, r. k. 7) - [RO(v, T, sso)v
3S [some_nonCercfo3 ,3)(S, add-AS, rmAS, (4, r), 2, v, 3, c. 5, k; (4, r). 2, v, 3, c, 5, k, 7)A-,in-aftcr, (S. delete-user. 2, v, 7)]]

• That is, user v is authorized to perform procedure c at trace T with reference r as its kth argument
if and only if either v is a system security officer at T or else the triple (c, r. k) has been added
to v's access set at some point during the course of T without subsequently being removed.

" The fourth and last of the parameter-setting procedures is setCCR, which follows much the
same pattern as the other three.

* 7
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setCCR

nf(7) - [L(T.set_CCR(u, r, x)) - [Ioggedjn(u, 7) A user-exists(u, 7) A container(r, 7) A ref-exiss(r, 7)A
AS(u, seLCCR, r, 2,7) A ref-secure(T, setCCR(u, r, x))]]

' [nf(T) A L(T.setCCR(u, r, x))] - [nf(T.set_CCR(u, r, x)) - [CCR(r, 7) # x A -3S 3v3y T = S.setCCR(v, r, y))

[nf(7) A L(T.setCCR(u, r, x)) A CCR(r, T) = x] - T.setCCR(u, r, x) - T

[nf(7) A L(T.setCCR(u, r, x)) A T = S.setCCR(v, r, y)] - T.setCCR(u, r, x) = S.setCCR(u, r, x)]

A call to setCCR preserves normal form-hood just in case (i) the container in question does
not already have the CCR value to which it is about to be set, and (ii) the resulting trace does
not contain back-to-back calls to setCCR for the same container. If (i) fails, then the trace is
equivalent to the result of deleting the last call to set-CCR, and if (ii) fails then the trace is

" equivalent to the result of deleting the penultimate call to setCCR.

2.3.2 Adding and rermoving values from a list

In addition to the single valued security parameters discussed above, the MMS model contains
security parameters in list form. These are the user's roles, role set, and access set. The values
of these list parameters are set by means of pairs of procedures: one for adding values to the

- list, one for removing values from the list. For example, a user's role set is manipulated by the
. procedures addiR and rmR:

addR

nf(7) - [L(TaddR(u. v, r)) - (RO(u, T, sso) A logged-in(u, 7) A user-exists(v, 7) A reLsecure(T, addR(u, v, r))l]

[nf(7) A L(T.addR(u, v, r))] - [nf(T.addR(u. v, r)) .- [-'R(v, T, r) A -'3u' 3S T = S.rmR(u', v, r)]]

l.'!  [nf(T) A L(T.addR(u, v, r)) A R(v, T, r)] - T.addR(u, v, r) _ T

[nfl) A L(T.addR(u, v, r)) A T = S.rmR(u', v, r)] - T.addR(u, v, r)) _ S]

U -. rm..R

U,- nf(7) - [L(T.rmR(u, v. r) - [logged-in(u, 7) A RO(u, T, sso) A user-exists(v, 7) A -.RO(v, T, r)
U-, Aref-secure(T, rmR(u, v, r)]]

* (nf(7) A L(T.rmR(u, v. r)l - (nf(T.rmR(u. v, r)) - [R(v, T, r) A -'3u'3S T = S.addR(u', v, r)]]

[nf() A L(T.rmR(u, v, r) A -'R(v, T. r)] - T.rmR(u, v, r) -T

[nf(/) A L(T.rmR(u. v, r) A T= S addR(u', v, r)] - T.rmR(u, v, r) - S

Only a system security officer may manipulate a user's role set, and so a call to addR or rm_R
* is legal only if the user issuing the call has the role of system security officer. A call to addR
" or rmR preserves normal form-hExo if and only if it is nonredundant and does not cancel the
,. effect of the procedure call th-,: immediately precedes it.

The other two pairs of procedures that modify list-parameters follow the same pattern as
addR and rmR.

.



User roles:

~ ' addJRO

nf(7) [ L(T.add-RO(u, v, r)) [ [RO(u, T sso) V u = v] A Iogged-in(u, 7) A R(v, T, r) A user-exists(v, 7) A
ref-secure(T, add-R0(u, v,r)]

[nf(T) A L(Tadd-RO(u, v, r))] - [nf(Tadd..RO(u, v, r)) - [-RO(v, T, r) A -Eu' ES T = S.rm..RO(u', v, r)]]

[nf(T) A L(Tadd..RO(u, v, r)) A RO(v. T, r)] - T.add-RO(u, v, r) =- T

[nf(T) A L(Tadd-RO(u, v, r)) A T = S.rmJIO(u', v, r)] - TaddJIO(u, v, r)) =-Sl

rmJ.RO

nf(T') - (L(Trm.RO(u, v, r) - (Iogged-in(u, 7) A (RO(u, T, sso) V u = VI A R(v, T, r) A user-eXiSts(v, 7)
Arcf-secure(T, rm-R0(u, v, r)]]

.~ , [nf(7) A L(TrmJRO(u, v, r)] - [nf(T.rmJIO(u, v, r)) - [RO(v, T, r) A -3Eu' 3S T = S.add-R(u', v, r)]]

[nf(TI) A L(Trm-RO(u, v, r) A -RO(v, T, r)] - Trm-O(u, v, r) =-T

[nf(TI) A L(Trm-RO(u, v. r) A T = S.add-RO(u', v, r)] - Trm-RO(u, v, r) =-S

* Access sets:

[lggdinu 7) adA , dA R(u, T, sso ) re-xit(i 7) A [role(v) V user-exists(v, 7)] A ref-secure(T, addAS(u, v, c, i, k))]]

fnf(T) A L(TaddAS(u, v, c, i, k))j - (n1(T.addAS(u, v, c, i, k))
VS aftcr-every-ef(3 ,3)(S, addAS, rm-AS, (4, i), 2, v, 3, c, 5, k; (4, i), 2, v, 3, c, 5, k, 7)

.eA-3Ej Eu' ES [T = S~rm-AS(u', v, cj, k) A coref(i, Tj, 5)]]

[nf(7) A L(TaddAS(u, v, c, i, k)) A T = S.rmAS(u', v, cj, k) A coref(i, T,], S)] - T.add-AS(u, v, c, i, k) =-S1

[nf('7) A L(TaddAS(u, v, c, i, k))A
-VS aftcr-every-ef(3 ,3)(S, addAS, rm-AS, (4, i), 2, v, 3, c, 5, k; (4,1i), 2. v, 3, c, 5, k, 7)] - T.addAS(u, v, c, ik) 7n

rm-AS

I~..rnr(l) -~ [L(T.rmAS(u, v, c, i, k)) -

* llogged-in(u, 7) A RO(u, T. sso) A rcf-exists(i, 7) A [role(v) V user-exists(v, 7)1 A ref-secure(T, rmAS(u, v, c, i, k))]]

.7' [nf(7) A L(TrmAS(u, v, c, i, k))] -[nf(TrmAS(u, v, c, i, k)) -
3.5 somc..none-ref(3,3)(S, add.AS, rmAS, (4, i), 2, v, 3, c, 5. k; (4, i), 2, v, 3, c, 5, k, 7)

* A-Ej Eu' S [T =S.addAS(u', v, cj, k) A Coref(i, T,], 5)]]

[nC(7) AL(T.rm-AS(u, v,c,1, k))A T =S.add-AS(u',v, c,], kA corcf(i, T,j,5)] -. TrmAS(u, v, c,1, k) SI
[nf(7) A L(TrmAS(u, v, c, i, k))A
3S somc-rioncesf( 3 ,3)(S, addAS, rm-AS. (4, i), 2, v~, 3, c, 5, k; (4, i), 2, v, 3, c, 5, k, 7)] - T. rm-AS(u, v, c, i, k) TI

Predicates of the some-none-ef(,,) family allow us to say of a trace that it contains a call
to a certain procedure and that this call refers to a given entity but is not followed by an

* occurrence of a procedure call of a certain sort referring to the same entity. More specifically,
some nione-ref(mn,)(S. CI,C2, (j,r),j1 . xl, * ,j, Xm; (k, r), k1, yi ... ,k~, y~, T) states that S is a prefix
of 7' and is followed in T by a call to procedure cl. This call has a reference x in position j

* 9
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that refers at S to the same entity that r refers to at T, and this call to c1 has argument xi in
position ji, for i from I to m, and there does not exist in T after S and the call to cl that follows
it, any occurrence of a call to c2 having argument yi in position ki, for i from I to n, and
having in position k a reference that refers (at the trace to which the c2 call is appended) to the
same entity that r refers to at T. The predicate after-every-ref(,,) is defined as the negation of
some-none-ref(,,,n).

2.3.3 Asking for values

% In this section we consider the specifications of functions that a system security officer may use
to ask for the roles, role set, clearance and access set of a user, the maximum classification of
information that is allowed to be displayed on an output device, the classification of an entity,

., and the CCR value of a container. These specifications follow one of two simple patterns, the
first of which being exemplified by the specification of currentR:

currentjR

nf(T) - [L(T.current.R(u, v, r)) -

[logged-in(u, 7) A [RO(u, T, sso) V u = v] A user-exists(v, 7) A rcf-secure(T, currentR(u, v, r))]l

-•nf(T currentR(u, v))

[nf() A L(TcurrentR(u, v, r))] - ".currentR(u, v, r) - T

!V.. [nf(7) A L(T.currentR(u, v, r))] - [[V(Tcurrent-R(u, v, r)) = True +- R(v, T, r)] A [V(T.currentR(u, v, r)) =

False - -'R(v, T, r)]]

Note that instead of giving the conditions under which a legal trace ending in currentR whose
longest proper prefix is in normal form is itself in normal form, the second axiom of this
specification simply states that no trace ending in currentR is in normal form. This implies

, that a legal trace ending in currentR whose prefix is in normal form is itself in normal form
if and only if <,, where /, is any contradictory formula. We could just as easily have stated the
second axiom this way, but the formulation that was actually used seems more to the point.

The third axiom implies that a trace ending in currentR is equivalent to any normal form
trace that is equivalent to its longest prefix. The fourth axiom states that currentR returns the
value true just in case the role set of user v at T contains the role r. The role set predicate R

is defined as follows:

R(v, T, r) - [[v = Roo! A r = ssolV

3S [somenonC( 2 2)(S, addR, rmR, 2 v, 3, r; ,, 3, r, 7) A -'in-after,(S, delete-user, 2, v, 'I)]]

That is, r belongs to v's role set at T just in case there's a point in the history of T such that v
has existed continuously since then and such that r was addet, to v's role set at that point and

- not thereafter removed.
Note that in the case of currentR, the return value of the function in question is a truth

value, and the security parameter in question is a list, viz. the list of roles that some user is
authorized to have. The function is used to ask whether a particular value is in the list, and

* returns the value true if it is and the value false if it is not. The other functions that have
this character are currentRO and current-AS, which we display below. The specification of
current-AS includes a trace definition of the predicate AS.

• I0
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current-RO

nf(7) - [L(T.current.RO(u, v, r)) 4- [logged-in(u, 7) A [RO(u, T, sso) V u = v] A user-exists(v, 7)A
ref-secure(T, current-RO(u, v, r))]]

-nf(T.current-RO(u, v))

[nf(T) A L(T.currenL-RO(u, v, r))] -. T.current-RO(u, v, r) =_T

[nf(T) A L(T.current-RO(u, v, r))]
* [[V(T.currenLRO(u, v, r)) = True .-+ RO(v, T, r)] A [V(T.current-RO(u, v, r)) = False ~- -RO(v, T, r))J

A current-AS

nf(7) -p [L(T.currentAS(u, v, c, r, k)) - [logged-in(u, 7) A RO(u, T, sso) A user-exists(v, 7) A ref-exists(r, 7)A
ref-sccure(T, currentAS(u, v, c, r, k))]]

-nf(T.currentAS(u, v, c, r, k))

* [nf(7) A L(T.currentAS(u, v, c, r, k))] - T.current-AS(u, v, c, r, k) =_T

* (nf(l) A L(T.currentAS(u, v, c, r, k))] - [[V(T.currentAS(u, v, c, r, k)) = True - AS(v, c, r, k, 7)]A
[V(T.currentAS(u, v, c, r, k)) = False - -AS(v, c, r, k, 7)]]

AS(v, c, r, k, 7) '- [RO(v, T, sso)
\/BS [sonenone~ef(3,3)(S, addAS, rm-AS, (4, r), 2, v, 3, c, 5, k; (4, r), 2, v, 3, c, 5, k, 7)A
-in-after, (S, delete-user, 2, v, 7)]]

In cases where the parameter in question is a single value, the function involved will simply
return that value, as in the specification of the procedure current-CU, which returns a user's
clearance and which is displayed below along with the trace definition of the MMS model
predicate CU:

current-CU

nf(T) -[L(T.current-CU(u, v, r)) '- [logged-in(u, 7) A [RO(u, T, sso) V u = v] A user-exiSts(v. 7)A
ref-secure(T, current-CU(u, v, r))]]

* -nf(T.current-CU(u, v))

[nf(T) A L(T.current-CU(u, v, r))] -, T.currenLCU(u, v, r) ==T

[nf(7) A L(Tcurrent-CU(u, v, 1))] -~ [V(T.currenLCU(u, v)) = CU(v, 7)1

CU(v, 7) = I ~- [3S [sonenone(2 1)(S, createuser, set-cu, 2, v, 3,1; 2, v, ) A -in..afterl(S, delete-user, 2, v, 7)] V
1]S [some-nonc(S, set-cu, set-cu, 2, v, 3, 1; 2, v, T) A -in..after 1(S, delete-user, 2, v, 7)11

The other procedures whose specifications are of this second type are current-CE, curreriLCCR,
and current-CD, which we display below along with the trace defintions of their associated MMS
predicates CE, CCR, and CD:

* current-CE

nf(7) -[L(T'.current-CE(u, r)) -[logged-in(U, 7) A RO(u, T, sso) A uscrcexists(v, 7) A rcf-exists(r, T)A
reI-sccurc(T, current-CE(u, r))]]I

-nf(T.current-CE(u, r))

[nf(l) A L(Tcurrent-CE(u, r))] - TcurrenLCE(u, r) T



N [nf(7) A L(T.current-CE(u, r))) - [V(T.current-CE(u, r)) = CE(r, 7)

CE(r, 7) = 1 '- 3S 3C~s [[caliname(C) = seLCE V callname(C) = cont-create v callnarne(C)=
obj-create V callname(C) = downgrade] A arg(C, 2) = S A arg(C, 3) = I A coref(s, S, r, 7)
A-3BR in-after-ef1 (S.C.R, c, (2, r), 3, r, 7) A (c = delete-ref V c = downgrade v c = seL-CE1

current-CCR
nf(T) - [L(T.current-CCR(u, r)) ~- [Ioggedin(u, 7) A RO(u, T, sso) A ref-exists(r, 7)A

ref-secure(T, current-CCR(u, r))]]

-'nf(T.current-CCR(u, r))

Lnf(7) A L(Tcurrent-CCR(u, r))] -+ T.currenLCCR(u, r) -=T

(nf(7) A L(Tcurrent-CCR(u, r))] - [V(T.currenLCCR(u, r)) = CCR(r, 7)

CCR(r, 7) =True - 3Co3RoVCVR [[callname(C) = set-CCR A prefix(R.C,7) A coref(arg(C,2),R, r, 7)]
prefix(R.C, Ro.CO)] A arg(C, 3) = True]

CCR(r, 7) = False - CCR(r, 7) # True

N currentLCD
0nf(7) -[L(T.current-CD(u, d)) - [logged-in(u, 7) A RO(u. T. sso) A device(d)l]

-.nf(T-currentLCD(u, d))

[nf(7) A L(T.current-CD(u, d))] -~ T.currenLCD(u, d) =-T

[nf(7) A L(T.current-CD(u, d))] -~ V(T.currenLCD(u, d)) = CD(d, 7)]

CD(d, 7) = x -~ [3S3C (callname(C) = set-CD A x = arg(C, 3) A VDVR (prefix(R.D, S.C) +- [prefix(R.D, 7) A
callname(D) = set-CDAcoref(arg(D, 2), R, d, 7)1]v[x = unclassifiedA-'BSWC[callname(C) = setLCDAprefix(S.C, 7)A

coref(arg(C, 2), S, d, 7)11

2.4 References and Entities

In the MMS security model, references to entities can be direct or indirect. A direct reference
is a number that serves as the name of an entity in the message system. An indirect reference
is a sequence nj ... :ni+1 of numbers, where nj ... :ni nj+1 represents the ni+lth element in
the container to which n, ... :ni refers. In the MMS model trace specification, references are

* defined recursively by the following axioms, where k is a variable that ranges over the positive
integers.

Recursive axioms

direct-.ref(k) A Vrlk[direct-ref(r) --+ r =kI
direct-ref(r) -*reference(r)

reference(r) -ireference(r :k).
reference(r) -+[direct-ref(r) V ]s 3k fIreference(s) A r =s k]]

* 12



2.4.1 Identifying references

It can safely be assumed that in the course of writing and modifying messages, entities will
frequently change their composition. Entities can be inserted in one another, deleted from one
another, or deleted altogether, for example. Yet we want to ensure that an entity retains its
security classification through such changes, unless the classification is explicitly modified, and
we want the same access privileges to apply to an entity after it is modified, unless these access
privileges are modified. In order to use references to identify an entity after it has been changed
we define the conditions under which one reference can be said to refer to the same entity at
trace T that another reference refers to at trace S. This is done by means of the coref predicate,
a four-place relation that is governed by the following axioms:

Coreference

coref(r, T, r, 7)

coref(r, T, s, R) - coref(s, R, r, 7)

coref(r, T, s, R) - [coref(s, R. t, S) -- coref(r. T, t, S)]

callname(C) = insert -

0 [coref(arg(C, 2), T, arg(C, 3) : arg(C, 4), T.CA [0 < k < arg(C, 4) - coref(arg(C, 3): k, T, arg(C, 3): k, T.C)] A [[k >
arg(C, 4) A reLexists(arg(C, 3) : k, 7)] --. coref(arg(C, 3) : k, T, arg(C, 3) : (k + 1), T.C)]

[[callname(C) = delete-ref A coref(arg(C, 2), S, s : k, T) '/ (callname(C) = remove A coref(arg(C, 3), S, arg(C, 2):
arg(C,4), T)A k = arg(C, 4)A s = arg(C, 3)] - [0 < n < k - coref(s : n, T, s : n, T.C)] A Un > k A ref-exists(s:
n, 7)] - coref(s : n, T, s : (n - 1), T.C)I

[callname(C) # delete-ref A callname(C) # insert A callname(C) # remove] - [coref(r, T, t, S) - coref(r, T. t, S.C)]

0m coref(r, T, s : k, T) - 3C3S [prefix(S.C, 7)A callname(C) = insertA coref(arg(C, 2), S, r, 7)A coref(arg(C, 3), S, s, 7)]

The first three axioms state that coref is an equivalence relation if regarded it as a binary relation
on pairs (r, 7), where r is a reference and T is a trace. The third, fourth, and fifth axioms describe
how the identity of an entity is preserved when modified using the procedures insert, delete-ref,
and remove, which are the only entity-modifying procedures presented here. If a container is
modified by inserting an entity into it at position k, then the entities at positions I through k- 1
in this container can still be referred to in the same way; of course, the newly inserted entity
becomes the kth element of the container; and, finally, those entities formerly in positions k+ 1
or higher now have their positions incremented by one. If, on the other hand, a container is
modified by delete-refing or removeing an entity from position k, then the entities that were
in positions I to k - I keep the same position, whereas entities in positions k + I and higher

P'-" have their positions decremented by one. Coreference is not modified by procedures other than

delete-ref, insert, and remove. Finally, coreference holds between references r and s : k only if
* r has been inserted into s.

Most of what needs to be said about entities can be put entirely in terms of references, but
for some purposes, such as the definition of potential modification, we will need to say things
directly about entities. Entities occur in this specification as the value of an entity function E

. which must satisfy these conditions:

VrVsVTVR [coref(r, T, s, R) - E(r, 7) = E(s, R)]

VrYT rcl_exists(r, 7) 3y y E(r, 7)

13
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entity-exists(x, 7) -. 3r x = E(r, 7)

entity(x) - 3Tentity-exists(x, 7)

[entity(x) A entity(y) - [x = y ,-- 3S 3T 3r 3r2 [E(rl ,5) = x A E(r2, 7) = y A coref(ri, S, r2, 7)]]

VxVT [entity-exists(x, 7) -- 3z [z = value(x, 7) A string(z)]]

The based-on relation, which identifies those references that refer to the pieces of an entity, is
defined recursively:

Vr Vk Ve [refexists(r k, 7) A E(r, 7) = e] - basLon(r : k, e, 7)

VrVkVe [ref-exists(r k, 7) A basedLon(r, e, 7)] - base-on(r : k, e, 7)

2.4.2 Creating, modifying, and displaying references

The procedures obj-create, cont-create, insert, remove, delete-ref, identify, and display can
be used to create, modify, and display references.

Entities are of two kinds: objects and containers. An object is an atomic or text-bearing
entity; a container is any sequence of entities. Objects and containers are created using the
procedures obj-create and cont-create, respectively.

obj create

nf(7) - [L(T.obj-create(u, k, 1, p)) - [logged-in(u, 7) A string(p) A -.3S [prefix(S, 7) A ref-exists(k, S)]
Aref-secure(T, obj-create(u, k, 1, p))]]

[nf(7) A L(T.obj_create(u, k, 1, p))] -- nf(T.objcreate(u, k, 1, p))

cont-create

nf(T) - [L(T.cont-create(u, k, )) - (Ioggedin(u, 7) A -'3S (prefix(S, 7) A relfexists(k, 7)]
AreLsecure(T, cont-create(u, k, /))]

[nf(7) A L(T.cont-create(u, k, 1))] - nf(T.cont-create(u, k, ))

When an object is created, it is assigned a direct reference k, a security classification 1, and a
,% value p, which is the textual string associated with the object. When a container is created it

is assigned only a direct reference and a security classification. Entities are inserted into and
removed from containers using the insert and remove commands, respectively.

insert

* nf(7) - [L(T.insert(u, x, y, k)) ,-. [logged-in(u, 7) A [loggedin(u, y, 7) - CU(u, 7) > CE(y, 7)]
- . Aref-exists(x, 7)AreLexists(y, T)ACE(x, 7) !5 CE(y, 7)A-'part-of(y, x, T)Ak > OAAS(u, insert, x, 2, T)Acontainer(y)A

AS(u, insert, y, 3, 7) A ref-secure(T, insert(u, x, y, k)) A [k = V 3s H(s, T, y, k - 1)]]]

- [nf(T) A L(T. insert(u, x, y, k))] - nf(T. insert(u, x, y, k))
14)
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remove

nf(T) - [L(T.remove(u, x, y, k)) - [logged-in(u, T) A ref-exists(x, T) A k > 0 A AS(u, removex, 2, T)
AAS(u, remove, y, 3, 7) A coref(y, T, x : k, 7) A ref-secure(T, remove(u, x, y. k))Jl

[nf(7) A L(T. remove(u, x, y. k))) - nf(T.remove(u, x, y, k))

Note that inserting and removeing always preserve normal form-hood; this is intuitively correct,
since one wants any legal modification of an entity to constitute a change in the state of the
module. Note also that legality requires the classification of the inserted entity x to be no greater
than the classification of the container y into which it is inserted. This requirement is part of the
MMS definition of state security.

removeing an entity from a container does not destroy the entity being removed. For this
the delete.ref command must be used.

delete-ref

nf(T) - [L(T.delete ref(u, r)) - [logged-in(u, 7) A refexists(r, 7) A AS(u, delete-ref. r, 2, 7)
Are fsecure(T, delete-ref(u. r))]]

S, [nf(T) A L(T.delete ref(u, r))] - nf(T.delete-ref(u, r))

Note that delete-refing a reference, like removeing a reference, preserves normal form-hood.
We have noted that delete-ref can, whereas remove cannot, be used to destroy, i.e. truly

p. delete, an entity. The reader may wonder why this is so, since nothing about the way the
two procedures are specified suggests this. The answer lies in the definition of existence for
references:

ref-exists(r, 7) - ES 3C [some-noneref(O.0)(S. c, delete-ref, (2, r); (2, r), 7) A [c = obj-create V c = cont-createll

,. An entity (a reference, from the user's point of view) exists just in case there is a point at which
it was created and after which it was never deleted.

An entity can be displayed to an output device in any of a number of ways. One can display
its value, its classification, its CCR value, its message type, or its direct reference. Hence the
range of legal switches in the third argument of the display procedure. Note, however, that
display is a procedure, not a function. Since displayed material need not be returned to the

* console that executed it, treating display as a function would not be appropriate.

display

nf(T) - [L(Tdisplay(u, rf. d)) - [logged-in(u, 7)A ref_cxists(r, T)A device(d)A CU(u, 7) > CE(r. T)A CD(d, T)>
CE(r, 7) A AS(u, display, r, 2. 7) ,A Lf = value vf = direct.ref Vf = classification vf = type vf = ccr-value] A
(f = value - [part-of(r, d. 7) A ES 7 = S.display(u, r, classification, d)]] A Vz [f = direct-ref A based-on(r, z. 7) A
CCR(z, 7) = TrueI - CU(u. 7) > CE(z. 7)1l A ref.secure(T, display(u, r,f. d))]l

[nf(i) A L(T.display(u, rf. d))] - [nf(T.display(u, rf, d)) ,- VSVC [[prefix(S.C, 7) A coref(arg(C. 2), S. r, 7) A
callnamc(C) = display Aarg(C. 3) =f Aarg(C, 4) = dl -. 3R 3D [prefix(S, R)A [[callnamc(D) = display Aarg(D, 4) =
d A coref(arg(D, 2), R, r, 7) A arg(D, 3) A fI V [callnamc(D) = delete-ref A coref(arg(D, 2), R, r. 7)1 V [arg(D, 4) =
d A callnamc(D) = identify] Ill

- (nf('/)A L(Tdisplay(u. rf, d))A IS 3C iprefix(S.C, 7)A corcf(arg(C, 2), S, r, 7)A callnamc(C) = display A arg(C, 3) =
f A arg(C. 4) = d A -3R 3D lprefix(S, R) A [[callname(D) = display A arg(D, 4) = d A corcf(arg(D. 2), R, r, 7) A
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arg(D, 3) f]v[callname(D) = delete.ref A coref(arg(D, 2),R, r,T)] v[arg(D.4) = d A callname(D) = identify]]]] -
T.display(u, r,f, d) =_ T

The special conditions in the legality definition associated with the cases where f = value and
f = direct-ref help to ensure that the MMS properties of State Security and CCR Security hold.
The normal form statement says that a call to display preserves normal form-hood only if it is
not made redundant by previous calls to display.

Next we come to the procedure identify, which allows one to display a user's user-id,5

clearance, access set, roles, and role set on an output device, identify, like display is a procedure
rather than a function and for the very same reason.

identify

nf(T) - [L(T.identify(u, NJ, d)) - [loggedin(u, 7) A device(d) A user(N) A [f = user-id vf = clearance vf =

access-set vf = role-set Vf = roles] A relfsecure(T, identify(u, NJ, d))J)

[nf(T) A L(T.identify(u, Nf, d))] - [nf(T.identify(u, N,f, d)) - VSVC [[prefix(S.C, 7) A callname(C) = identify A

arg(C, 2) = N A arg(C, 3) =f A arg(C, 4) = d] - 3R 3D [prefix(S, R) A arg(D, 4) = d A [[callname(D) = identify A
arg(D, 2) = N A arg(D, 3) $f] V callname(D) = display]]

[nf(T) A L(T.identify(u, N,f, d)) A 3S3C [prefix(S.C, T) A callname(C) = identify A arg(C, 2) = N A arg(C, 3) Y
S f A arg(C, 4) = d A -3R 3D [prefix(S. C, R) A arg(D, 4) = d A [[arg(D, 2) = N A callname(D) = identify A arg(D, 3)

-f] V callnane(D) = display]l] - T.identify(u, N,f, d) T

2.5 Downgrading and Releasing

The final two procedures in the specification are downgrade and release. Since these procedures
always modify the state of the module, they are always normal form preserving.

downgrade

nf(') - [L(T.downgrade(u, r, 1) - [RO(u, downgrader, 7) A logged-in(u, 7) A user-exists(u, 7) A reLexists(r, T)A
CE(r, 7) > I A Vt Vk [H(t, T, r, k) - CE(, T) 5 f] A callname(C) = downgrade A AS(u, downgrade, r, 2, T)A
ref-secure(T, downgrade(u, r, 1)]]

[nf(T) A L(T.downgrade(u, r./)l - nf(T.downgrade(u, r, I))

* release

p.t.q nf(l) - IL(T.release(u. r) - IRO(u. releaser, T) A user-exists(u, 7) A logged-in(u, 7) A ref-exists(r, 1) A T(r, 7) =

DM A AS(u. release, r, 2,7) A ref-securc(T, release(u, r)]]

-. (nf(7") A L(7. release(u, r)I - nf(T.release(u, r))

0
Note that the legality condition of downgrade requires the issuer of the command to have
the role of downgrader. Similarly an issuer of release must have the role of releaser. These

requirements ensure that the MMS conditions of Downgrade Security and Release Security are
met. Also, in order to ensure State Security, a container must not be downgraded to have a

"" classification lower than that of any of the entities that it contains.

5 Displaving a userid is a trivial operation, since in this specification we do not distinguish user names from

. user-ids.
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2.6 Security

The MMS model prescribes eight basic security properties: state security, access security, copy

security, CCR security, translation security, set security, downgrade security, and release security.
In this section we consider, one by one, each of these security properties and give the outline of
a proof that they are satisfied by any module That meets the specification outlined above.

2.6.1 State Security

The original MMS definition of state security has five parts: (i) no c ntainer may have a lower
clearance than the entities it contains, (ii) no entity displayed on a user's terminal may have
a classification that is higher than the user's clearance, (iii) no entity may be displayed on an
output device unless its classification is displayed along with it, (iv) no user may have a role
that does not belong to his current role set, and (v) the actual classification of an output device
may not exceed its authorized maximum classification. These requirements are specified in the
following definition of the trace predicate state-secure.

state-secure(T) - [VrVsVk [H(r, T, s, k) - CE(s, T) < CE(r, 7)] A VoVuVkVr [[H(o, T, r, k) A toggedin(u, o T)]

CU(u, 7) > CE(r. T)] A Vo Vx [D(o, x, value, 7) - D(o, x, classification, 7)] A Vu [RO(u, T, r) - R(u. T. r)] A

Vo [CD(o, ") CE(o, 7)1]

Proving that state security holds simply means proving that every legal trace satisfies this pred-
icate, i.e.

Lemma 1 (State Security) VT[ L(T) -+ state.secure(T)].

,-, Proof: Consider the first clause. Suppose that L(T) and H(r, T, s, k) hold. Then, by the definition
of H, it follows that r : k is coreferential with s. By the axioms for coref, this means that the
entity E(s, 7), to which s refers at T, was at some time inserted into the entity E(r, 7). Since
L(T) holds, every prefix of T must be legal, and so the insertion of E(s, 7) into E(r, 7) must
have been a legal operation. Hence, at the time of insertion S, it must have been true that

CE(s, S) < CE(r, S). But since T is a legal trace, all of its prefixes are legal, and since the
downgrade operation is specified so that a container cannot legally be downgraded to below
the level of its most highly classified element, and in view of the Downgrade Security Lemma

* (proved below), it follows that CE(s, 7) < CE(r, 7).
Cnn idcr the second clause, and suppose that L(7), H(o, T, r, k) and logged-in(u, o, 7) all

hold. From H(o, T. r, k) it follows that coref(o : k, T, r, 7), and since logged-in(u, o. T), it must
" be that u inserted E(r, 7) into o during his current session. (The latter follows from the last

coreference axiom and from the fact that logging out is only legal if one's terminal is clear, so
S that o must have been empty when u logged in.) Since u himself or herself inserted E(r. 7) into

o, it follows from the legality condition of insert that u had the necessary clearance at the time
% of insertion. Since references can only be downgraded, and since the clearance of a user cannot
%S be changed except when he is logged out, it follows that CU(u. 7) > CE(r, 7).
%S Regarding the third clause, suppose that D(o, x. value, 7) holds. Then, by the definition of D,

it follows that from some time in the history of T, say at trace S, the value of x was displayed
on o. The legality clause for display implies that the last procedure call in S is the operation of
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displaying x's classification on o. This classification must still be displayed at T, since x has not
been removed from o in the meantime, hence D(o, x, classification, 7) holds as required.

Regarding the fourth clause, suppose that RO(u, T, r) holds. Without loss of generality,
suppose that u is not Root, T is not the empty trace, and r is not sso. Then, by the definition of
RO, it follows that r was, at some time S in the history of T, added but never thereafter removed
from the list of u's roles. But then by the legality condition of addR it follows that r was in u's
role set at S. And, since R has been a role of u continuously since S, it follows from the legality
condition of rmR that r was never removed from u's role set. Hence R(u. T. r) as required.

Regarding the fifth clause, suppose, without loss of generality, that CD(o, 7) is higher than the
value unclassified. Then it was set higher at some point in the history of T; let S be the moment
of the last such setting, and let I be the level to which CD was last set. The legality condition of
setCD implies that I > CE(o, S) holds. Now consider moments since S; by hypothesis, CD has
not been modified since S, but if CE has been modified, then, by the legality condition of setCE,
it follows that any such modification was to a level no greater than 1. Hence CD(o, 7) > CE(o, 7),
as required. I

'. 

2 6.2 Access Security

The original MMS model definition of access security states that a user may perform a given
'-" operation involving an entity only if the triple cor-isting of (a) either the user or one of his roles,

(b) the operation, and (c) the entity's position appear in the entity's access set. In order to state
this requirement in terms of traces we define the predicate acc-secure, which holds of a trace
and a procedure call just in case the given procedure call itself does not violate access security.

acc-secure(T. C) - Vk [reference(arg(C. k)) - [AS(arg(C, 1), callname(C), arg(C, k), k, 7) v 3r [RO(arg(C, 1), T, r) A
AS(r, callname(C), arg(C, k), k. 7]1]

- Proving that the module specified here meets the requirement of access security means proving
that every legal occurrence of a procedure call satisfies this predicate, i.e. we must prove:

Lemma 2 (Access Security) VTVC[ L(T.C) -+ acc-secure(T, C)].

' Proof: By the definition of ref-secure and by inspection of the legality condition of each proce-
* dure. |

2.6.3 Set Security

Set security is really two requirements: (i) a change in the maximum classification of a device
or the classification or role set of a user may only be made by a user with the role of system

.. security officer, and (ii) a change in the role of a user may only be made by the user himself or
by a system security officer. Proving that our specification meets this requirement means proving
that every legal occurrence of a procedure call satisfies the predicate set-secure:

$
--.* seLsecure(T, C) - [VoVx [[CD(o. 7) $ CD(o, TC) V CU(x, 7) CU(x, T.C) V 31-,[R(x, T,!) =_ R(x. .C, 1)11

RO(arg(C. 1). 7. v.o)J A [uJ]l -[RO(u, 1) RO(u, T.C, 1)] - [u = arg(C, 1) V RO(u, T, sso)lll
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Lemma 3 (Set Security) \'TVC [i L(T.C) --- set..secure(T, C) J.

N Proof: There are four cases to consider. To begin with, consider the case where CD(o, T)
CD(o, T.C) holds. From this and the definition of CD it follows that callname(C) = setCD.
Since L(T.C) holds, we have by the legality axiom for setCD that RO(arg(C, 1), T, sso), as
required.

Suppose next that CU(x, T) CU(x. T.C). From this and the definition of CU it follows that

callname(C) = set-cu. Since, again, L(T.C) holds, we have by the legality axiom for set-cu that
RO(arg(C, 1), T, sso), as required.

Suppose that -[R(x, T, 1) - R(x, T.C, 1)] holds; there are two cases. If R(x, T. 1) holds but
a-" R(x, T.C, 1) does not, then callname(C) = rmR, by the definition of R. But since L(T.C) holds,

it follo'-,s from the legality axiom for rmR that RO(arg(C, 1), T, sso), as required. If R(x. T.C 1)
holds but R(x, T. 1) does not, then callname(C) = addR, by the definition of R. By a similar
argument, it follows again that RO(arg(C, 1), T, sso).

Finally, suppose that -[RO(u, T, 1) = RO(u, T.C, I)]; the argument and case structure are
exactly as for the previous case, except that in this case it follows that fu = arg(C, 1) V
RO(u. T. sso)]. I

2.6.4 Downgrade Security

'a To express downgrade security we need the following predicate, which holds of an occurrence of
a procedure call just in case that occurrence either brings about no downgrade in the classification

of any entity, or, if it does, then it is an invocation of the downgrade procedure by a user with
the role of downgrader.

downgradesecure(T, C) - Vx [[-'device(x) A CE(x, 1) > CE(x, T.C)] -

'i [callname(C) = downgradeA

RO(arg(C, 1), T, downgrader)]]

. To establish Downgrade Security we prove:

-• .. Lemma 4 (Downgrade Security) VTVC [ L(T.C) - downgrade -secure(T, C) ].

* Proof: Suppose that CE(x, T) > CE(x, T.C) holds. Since x has a classification at T, C must
not be a call to either the procedures cont-create or obj.create, and since x is not a device,

C must not be a call to setCE, either. Hence, by the definition of CE it must be a call to
downgrade, as required. And since T.C is legal, it follows by the legality axiom of downgrade
that RO(arg(C, 1), T, downgrader), as required. 1

% 2.6.5 Release Security

For establishing release security we need this predicate.

rcleascsccurc(T, C) - [[T(r, 7) = RM - [T(r, T.C) = RM A Vu [RE(r, T, u) - RE(r, T.C, u)]] A [[T(r. 7) RM A

T(r, T.C) = RMI - [RE(r, T.C, arg(C, 1)) A callname(C) = release A arg(C, 2) = r A RO(arg(C. 1), T, releaser) A

T(r,') =DMIII
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Lemma 5 (Release Security) VTVC [ L(T.C) --+ release-secure(T, C) 1.

Proof: There are two cases. Suppose that T(r, 1) = RM; then callname(C) $ release, by the

legality axiom for release, which also implies that RE(r, T, u) -- RE(r, T.C, u), since T is a prefix
-of T.C.

Suppose instead that T(r, 77) RM but T(r,T.C) = RM. In this case it follows from the
definition of T that callname(C) = release and arg(C, 2) = r, as required. By the legality of T.C
and by the legality axiom for release it follows that RO(arg(C, 1), T, releaser) holds, as required,
and by the definition of DM it follows that T(r, 7') = DM, as required. 1

2.6.6 Translation Security

' In order to prove translation security we need this predicate:

, trans-secure(T, C) - Vo VxVz Vu [[logged-in(u, o, T.C) A direct.ref(x)A
D(o, x, direct-ref, T.C)] - Vs [3r 3k [arg(C, k) = r A E(r, 7) = E(x, 7) A based-on(r, z, 7) A E(s, 7) = z A CCR(s, 7)]

_ CU(u, 7) > CE(s, 7)11]

Lemma 6 (Translation Security) VTVC [L(T.C) -- trans-secure(T, C) 1.

Proof: Suppose, as required, that a direct reference to an entity is being displayed on the terminal

of a user who is logged in; i.e. suppose that D(o, x, directref, T.C) and the other hypotheses of
trans-secure(T. C) hold. Then, by the definition of D, there is a prefix S.C of T such that C is a
call to display and direct-ref is its third argument. By the legality of S.C and the legality axiom
of display, it follows that CU(u., 7) > CE(s, 7), as required. I

2.6.7 Copy and CCR Security

Copy and CCR security are based on the notion of potential modification, for which a rather
complicated trace definition is given in the appendix to this report. The idea behind potential
modification, is this: a procedure call C potentially modifies a reference r at a trace T with an

entity y as a contributing factor if and only if there is at least one trace S that would be equivalent
to T except for the values of some entities,6 such that C executed at S modifies some function

* F of r, where F is taken from the following list: access set, containment, value, CCR value,
classification, or message type, and where the F-value of r varies depending on the (entity) value
of y. Copy security requires that any such contributing factor have a classification no higher
than r itself has. CCR security requires that if y is an entity that is based on a CCR container x,

and if y is a contributing factor in the potential modification of some reference, then the security
clearance of the user submitting the procedure call must be at least as great as the classification
of x.

The relevant trace predicates for copy and CCR security are these:

copy-secure(T,C) --. VrVy [pimodify(C, r, T,y) - ]x[y = E(x, 7) A CE(x, 7) < CE(r, 7)]
6Such an S would be trace equivalent to T, since entity values do not figure in trace legality and since there

are no functions in the module that return them as values. Equivalence up to a single reference is expressed in the

o-equiv predicate.
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CCR-secure(T, C) .- VuVrVzVy[[3kr = arg(C,k) A basedon(r,y,T) A 3s[y= E(s,T) A CCR(sT) A

.". p-modify(C, z, T, E(r, 7"))] -. CU(u, 7') > CE(z, 1)]

Lemma 7 (Reference Security) VTVC [ L(T.C) -- [copy-secure(T, C) A CCR.secure(T, C) 1.

Proof: Suppose that L(T.C) holds. Since reLsecure(T, C) holds of each T and C such that T.C

is legal, it suffices to prove that p-modify(C, r, T, y) -+ ]s 3k [coref(r, T, s, T) A arg(C, k) = s ].
Assume that pmodify(C, r, T, y) holds. Let S be given such that S = T and -ieequiv(S. S.C. E(r, S))

both hold. Let F be an entity function for which S and S.C are not equivalent. Note that since
E(r, S) is assumed to be well-defined, it follows that C is not cont-create or obj-create. Note
also that no matter which entity function F is, it follows from the definition of the F-predicate
(e.g. the definition of CE(x, 7)) that C must be a certain procedure that sets the value of F.
Obviously, some reference to E(r, 7) will have to be mentioned in the call to any procedure that
sets the value of F for E(r, S), and so it follows that Is 3k [coref(r, T, sj T) A arg(C, k) = s, as
required, 1

Finally, we summarize the eight basic security properties in the predicate MMS-secure:

MMS-sccure(i, C) - [acc..secure(T, C)Acopy-secure(T, C)ACCR-secure(T, C)Atrans._secure(T, C)Asetsecure(T, C)A

* downgradesecure(T, C) A release-secure(T, C) A state-secure(T)]

These lemmas and this definition suffice to prove our main theorem.

Theorem 1 (MMS Security) VTVC [ L(T.C) -4 MMS-secure(T, C) ].
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Appendix - The MMS model specification

Procedures

login
nih) - [LT login)., d)) - -loggLi-m.., d, 7) A U~-~SU 7) A .nLw-rt,.(T, Iogln(.., d))J)I

(nIIT A L(T login(.., d))) - [siT login(.. d)) .- 
3

x 3R T = R logout1)., d~j

(nflT) A LUT login).., d)) A T = Rilogoull.., d))] .TioginI., d) T

create-user
ni(7 - [LIT crueeumr(.., ., 1) - fRO(m, T, o) A uronisol,, 7) A logged-inI., T) A - xxi.nm&. 7) A .. fjw.=m(T, crm.tojuser(., v., 1))jJ

jnil
7
) A 14T ..real*...,rl., v., 1))) Inf(T croalojuno'). v., r) - 3u' 3R IT = R dtete.-unr(u .) A Cu(.', R) il

(nilT) A LIT crmea-eunrl., v, 1)) A T = R deletej-norl., v) A CU(.., 7) T rcr~t..u,.r., v, 1) =-R

set-CU
W.IT) - [IL(T.S.LcuI... nI )) - [RO).., T. iso) A n...-i103(., 7) A loydrm 7) A U~-~~Xv T) A -Iogaediri., 7) A anfiecw(T. w Lcu.I., v, [)))I

In f(T) A 1-4T "s ..u)., v, 0))1 - 'IlnT wt -c ul., w, 1)) - CU)... T) #~ I A .3 S 3.' 3..' 3 ' T = S. wLcu~m', V, ?')J

S[nflT) A LT wt-cu(., .01) ACUv ) = 1] - T NLC. .... ). - T

% I'f1) A UIT setxul.., v, 1)) A T = S seLcul.., , I')] - TxeLcul.., Y, 1) -=S seLCUl.,n

addR
'sf1) -. [WI ..d&RI.., v, r)) - IRO(.., T. no) A logg..dinI., T) A no.is.,7) A .nLsnos(T, addjI.., ,r)J

('silT A lIT mdd..RI., s', r'))] - )'iTadd-lI.., v., r) - [-RI.', T, r) A -. 3m' 3S T = SnRI.', v., r)Jj

* [,In7() A LIT add..RI., v, r)) A R)., T, r)] -. Tadd.R)., , r) T

[nil7) A l.add..RI., Y. r)) A T = S. rsn.RI.', v, r)] - Tadd.RI., v', r)) =-SI

rm-R
..fI7) - [L(T rnLRI., v, r) - (1(48ed~i.~u, T) A RO(.., T, no) A use....ists(., 7) A 'R06', T, r) A .. fjecson(T, rno...' )I

's's ~[ni(7) A LIT rm.R(..j, Y,'r) - ['silT.m.R(., .., r)) - [(I., T, r) A -3u. 3S T = S add.1I..', v, r'I

'sil(T) A LIT rm.RI.,.' v,r) A -'Rlv, T, r)) - T. rm.RI.., vs, r) -- T

)'sil7) A LIT rmRl.., v, r) A T S addLRI./, v. rI T rm.R(.., v, r)l= S

add..RO
'sf17) - [[IT ad&ROI,., o l r) [IRO(.,. T, n.n) V v] . A isgdi., 7) A RI.., T. r) A ssxcninW., 7) A ,nfz...wm(T, add-RO(.,.. v,))I

['sff7) A IXT add-Rl.. v.. r)))I -'siT add-RO(.., 's, r)) - [-RO)... T, Y) A -3u. 35 T = S rm-ROI..', v', r)jI

WMslT A UIT .dd..RO(., .., r)) A RO(". T, r)] - T add.lOI.., .') = T

[nftl; A UIT addilOl.., v., r)) A T = S rst.RO(.', v., r[[ - T ad.RO(... Y, rI)) SI

rm-RO
'sfM7 - IUT nm-O.10<..v. 0) - (lnued-inI.., T) A IRO)... T, ano) v u = vI A RI.., T, r) A sTe..2stn(., 7) A sef~coseT, rs.RO(.., r., I)

[nRlT) A IXT rm.RO(, , o~l - ['silT rm..RO(.., v, 0) [ RO(... T, r) A -3. 3S T = S addlI.. n. rllI

['silT) A 1.4T rrnRO(.., v, r)A -'RO)., T, r)] - T n-O.10).,.r) =-T

1.Il7) A UIT -RO). Y. r)[A r = S dd-RO(..',vr)( - T rstRO)., v, r) S

delete-user

silT) - [LIT deiltuar.., "I - [ogvdij... T) A ROI.., T, no) A saer.cniztz(, 7) A o..Lac.eIT. deltt*.user(.., v1)1]

(nfi7) A UIT deileje-oI... v)) - (ilT defetex..,r.., v.) 1, I3..' 3S T = S crmaie....wI.. v)]

InffT) A lUT delet, .. r(.., )) A T . S create-user~u)..'I T delete.uwrl., v) =-S)
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add-AS
(nm7 - IUTaxdd.AS(m, v, c, iA)) -. Daopd-iz~m, 7) A RO(m, T, nso) A refnniu1.(i, 7) A I role(v) V Uacr~xi9(v', T)) A unLsecuwCT, add..AS(m, v, c, i )]

bill) A LXT.add.AS(m, n, c, j, k))] - InfXT.addAS(ma, c , i ) VSafbrevery-e( 3 ,3 )(S~ add.AS, run-AS, (4, ), 2, v, 3, e, 5,A; (4,i), 2,v, 3, C, 5. k, 7)A

- 3j3m' 3STSrm.AS(v', o, cj, k) A coreni, Tj, 5)11

[DIMl)A "T.add.AS(u, v, C, i,A)) A T-S.rm.AS(e',v,cj, k) A coref(i, Tj,S) - T.add-.S(, o,c, i. k) =_SI

[UM )A UT.add.AS(v, , c, i, k)) A -VSS n~cvryank3,3 )(S,add_.AS, rm..AS, (4,0s, 2, v, 3, c, 5,k;(4, a), 2,, 3, C,S,A, Ti1 - T.add.AS(, ve, ik ) =_ 7

rm-AS
[nMh -. [UT.rnt.AS(m, Y, c, i, A)) - Ilonoedjn(m. 7) A RO0s, T, Ms) A reLe~dut(i, 7) A frole( ) V umcrcjexWs, 7)) A unf,,nue(T, rm-AS(u, v, c, i, )I

InI(7)A UTe tAS(e, v, c, iAk))] - [m(T.rmAS(u,, c, ,A)) - 3Sboowcnun.se( 3 ,3)(S, ad..AS, run-AS, (4, s),2, v, 3, c, , k;(4, a) ,v 3, c,5, k, )A

-
3

j i' 3SIT= S add&AS(u', o, ecj, A) A c f(i, T,j, 5)]1

(oI(7 A LUTrm-AS(, v, ci, A)) A T-=S-add..AS(i , v, e,j, k) A corcni, Tj, 5)] T.rmAS(m, o, ci, k) =_SI

[DIM7 A UT rnu.AS(, v, ci, A)) A 3S mcotw~uume~rc(3,)(S, add-AS, run-AS, (4, 0, 2, w, 3, c, 5, k; (4, 0), 2, v, 3, c, 5, A, 7)) - T. nn-AS(m, Y, c, i, k) T)

currentJR
of(7 - )UT-current.R(m, v, 0)) - lcd~in(-, 7) A [ROOm, T, m~) V m = v) A oscr~exiso~v, 7) A mrncurn(T, currenLR(e, v, r))]]

-of(T currentLR(m, v))

[nIM7 A UT currenLR(-, v, r))] T.currenLflle, vr) =_T

Inf(7) A UT .currentLR(m, v, r))] - (TcurrtntR(m, v, r)) =True - R(v, T, r)) A IV(T.currtnLR(m, Yr)) . Fain - -R&, T, r)I]

* current-RO
nt(T) - UT currenLRO(. e, r)) - ~gdi~,7) A IRO(u, T, ms) V a = v] A us..existu(e, 7) A mLcurs(T, current-RO(u, v, r))II

* o1-n(T currtntjtO(u. I)

Inf) A UT currenLRO(, v., r))( - T.current-RO(u, ,r

fnfM7 A UT currtnLkO(m, v', r))] - ((V(TcurrenLflO(a, v, r)) = True - RO(v, T, r)] A [VCT.currenL-RO(, v, r)) = Falin - RO(v, T, r)II

current-CU
nfM7 - WU.currenkCU(m, v, r)) - [toged-in,(m, 7) A [RO(m, T, no) V m - vI A userxiut(, 7) A - ,currentCU(m, v, r))]]

n1(T currmnLCUNl, v))

(nf(7) A UT.current-CU(u, v, r))( - T.currenL-CU(, Yr) ET

(nf(7) A UT currenLCU(ua, l - fV(TcurrtntCU(v, v)) -CUv, 7))

set-CCR
a, ni[7) -. [UT seLCCR(e, r. x)) f logged-in(s,, 7) A usercminge, 7) A contuimr(r, 7) A refexigo~r, 7) A AS(m, BeLCCR, , 2, 7) A mjcwu(T, setCCR(m, r, x))()

)nf(7)A UT.set.CCR(.., r, x))l Inf(T. stt-CCR(e, r, x)) - CCR(r, 7) #~ x A FS3e3y T =S. stt.CCR(, P,)I

( nt(T) A UT seLCCR(u, r, x)) A CCR(r, 7) = x - T-seLCCR(m, r, x) =_T

[nt(7) A UT set.CCR(m. r, x)) A T =S, geLCCR(v, r, y)] - T mLCCR(u,, x) S. getCCR(a, r, )I

downgrade
n. r0) - (UT downgradt(m, r, t) - (RO(m, dowengrader, 7) A loggdirim, 7) A user-eoists(, 7) A mf euxiso A CE(r, 7) > I A Vt VA IHQ, T, r, ) CE(1, 7) :5 1]A oullnarnm(C)=
downgrade A ASNa, downgrade, r, 2, 7) A ueLwcu(T, downgrade(a, r, oil1

* (nf(T) A UT downgradeNa. r, )] - of(TLdowngradea, r, M)

release
nf(7) - ULT releaseWa,r) (RO(m, unleaer, 7) A usrexihts(m, 7) A logpdjrua, 7) A rnLexist.(r, 7) A T(r, 7) -DM A AS(a, release, r, 2, 7) A Mfst,,mee(T, release(a, r)II

(nfM7 A UT rtleauek, r)( nf(T release)., r))

* logout
ar(T) - IUT logout~m, d)) - Ilogipe.Juna, d, 7) A 3pr 3k11(d, T, r, A) A ref-mcourn(T, lotout(a, d)))I

C )niff A UT logout~m, d))( - (WIlT logout(, d)) -- 3S T mS. kigln(, d))
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[nf(7) A L(T ogout(m, d)) Ar T Slogin(v, 4)) -. T.ogout(w, d) - S1

currentAS
nfMT - (LT. currenL-AS(m, v, c, r, k)) . loggedcin~, 7) A RO(u, 7, mj) A uormxiut~fr 7) A mLomso~r, 7) A refixum(T, cumrnLAS(m, v, c, r, k)))]

-txf(TcurrenL-AS(m, v, c. r, k))

infO) A L4T.currenLAS(m, v, c, r, k))) -, T.currenLAS(u, v, c, r, k) =-T

InIM7 A U(T currenLAS(m, r, c, rk))J - ifV(T.currenLAS(m, v, c, r, k)) - True - ASO', cr, k, 7)] A )'V(T.currtnL.AS(m. , nc,, k)) - Fals - ASOv, cr, k, 7)))

curren-C E
nf(7) - iL(T currenLCE(m. r)) [l)ogged-ini, 7) A RO(m, T, so) A uscrcxistxv, 1) A msexisoC, 7) A refjeccam(T, currenLCE~m, rf))

-nf(T currenL.CE(w, r))

[nfM7 A L(T currenLCE(m, r))) T.currenLCE(., r) =-T

fn47) A L(Tcurrent-CE(., r))] -. V(T.currenL-CE(m, r)) = CF~r, 7)

current-CCR
n1(7 - (L(Tcurrtnt-CCR(v, r)) - )log~ed-ir~u, 7) A RONs, T Ms) A efexistu(r, 7) A neLoum(T, errnLCCR(., r)))]

-p1(1 currenLCCRis, r))

Inf(7) A U(TcurrenLCCR(m, r))) - T. currenLCCRis, r) =-T

[nf(1) A I(T currenLCCR(m, r))] - (V(TcsrrenLCCR(m, r)) = CCR1), 7)

* current-TY

nf(T) - )L(T.currenLTY(m, r)) - [Iogpcdin(v, 7) A RO(m, T, mi) A refcmisi~,, 7) A ,eLsecue(T, currenLTY(m, r))))

-'nICT currenLTY(m, r))

)fnfM A W(TcurrenLTYis, r))] - TcurrenLTYis, r) =-T

(nf(1) A U(T currenLTY~a. r))] - )viTrcurrenLTY(m. r)) = TOr, 7)]

set-CE
p1(T) - PLT wt-CE(5. d, 1)) [.)lg~dUo(., 7) A AS(., seLCE, d, 2, 7) A dcvice(4) A I < CDd, 7) A nejreL(T, setLCEN, d, I)

)nf)7) A 4(T SttCE(, d, ))I d, )ut0eCEs1) .- 1,.' 31asT = S.aeLCE~, d,1) A YCYR JfpsixCR. C, 7)A eslimame(C) SLCE A ww1(ag(C, 2), R, d, 7)) -

)swg(C, 2) if I V 3C' as jcoalnz(C') =set..CE A c~fu(sC', 2), Sd, T) A psefix(R.C, S.d) A .a(C', 2) # nhi)

iWf7) A U(T .CCE, d, 1)) A T = S. stLCEWs, d. 1')) - T set.CE(m, d, 0 ) S.set-CE:(s, d )

(n1(T) A (Tset-CE(m, d, r)) A 3C 3R ipefixfR.C, 7) A cullnzn(C) = set.CE A cmfe(srg(C, 2), Rd, 7) A sr8(C, 2) =1 A -.3d 3S[c&Inmns(C') *gt.CE A =t~f(smg(C', 2), S,d,7T) A

.7 ~ infix'R C, S.C) A .,iC', 2)4 fl) 1)) T~eLCE~s, d, t)= T

set-CD
n1(7 - [1(7 SLCD(a, d, 1)) .- (lo Li,d s, 7) A RO(m, T, so) A CE(d, 7) < I A device(d) A m.fjcso(T, SeLCD(m, d, I)

* (p1(7f() A UT mt-CI)(o, d,)] - )nr.(mt.cD(s, 4, )) - J-3..' SI' as r = S.SeLCD(-s d, ') A V'cYR irsefix(R.C, 7) A calhn (C) - eLCD A .sitfsg(C, 2), R, , 7)]
isz(C. 2) p I V sC' a 3Sc.)Ins(C ) = seLCD A cosf(arg(d. 2), S,d, 7) A piefix(R.C, SC') A ar(C 2) 1)

In1(7) A L(T.sel.CD(m, d, 1)) A T = S.seLCDN/, d, I')] - T.stLCD(m, d,1) = S. wLCD(m, d,!1)

)IT7)A I(T seLCD, d, 1)) A 3C 3R fpefix(R.C, T) A callrnm(C) = seLCO A -cxf(scg(C, 2), R. d, T) A sg(C, 2) = 1 A - sC' 3S [calnanw(C') 9 eLCD A =ose(arg(d, 2), S,4d,T) A
preh.(R C, S C') A sg(C,. 2) pi 1))) - T. SeLCD(., d, 1) =-

current-CD
nf(7 - [UT currenLCD(m, d)) -= (logpd-mn(m, 7) A RO(m, T, sso) A device(d)))

-poT currenLCDXu, d))

[nf)7) A I.T.currtnLCD(m, 01) - TcurresLCDMs, d) ET

(p1(7) A l.(T currenLCDKm, d))) - V(TcurrenLCDXu, d)) = CD(d, 7))

display
p1)7) - [U(T dhsptay(., .rf.d)) - )iogge~inis, 7)Ar Lsxis(ui, T)Adcoice(d)A CUJ(., 7)> CEOr, 7)ACfl(d, 7)> CEOr, Z)AAS(., display,.r, 2, 7)AV - nsIuis Vf - dict-sp1Vf.
d-sfiodopV vf tye V f - "r.,aluej f=A V = . w fp.o1(, d, 7) A as T -S ditplay(s.r, caosicanim, d))) A V: IV -dimc~mf A bmwd (,, ,7) ACC ~rs, ) . This)
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/ CIJ(N, 7) > C(s, 7)]] A uMfjcGur(T display(M, j, 4)]]]

]nE7)A LATdispity(,,,j))) - [nfCTdIjplay(u, rjfd)) - VSVCI]p-W,.S.C, 7) A caef~u(C,2),S, r, 7) A caflnama(C) a isplay A arg(C, 3) a f A azg(C,4) . d)
3R 3D ((S.R) A ]]cailasmaW) - display A wjgW, 4) - d A comiars(D, 2), R, 1.7) A arsD. 3) P1 A V ItalInAssO) - deletajref A oowsftarXD, 2), R,, ) v Iagg(D, 4)
d A 4aiisxzn.(D) - lentilIl

]ssfM7 A UT.display(., rjf d)) A BS3Cfpsd4SC, 7) A corcf(ag(C,2),S, ri) A o.flnanw(C) a display A ug(C, 3)-f A ara(C,4) a.dA .3R 3DIpns'eh4S,R) A ]]caiibnt(D)
display A azg(D, 4) .d A uwt(aw&(D, 2), R, r, 7) A asa(D, 3) y' f] v ]caamm(D) - delete( A corel(ars(D, 2), R, , 7)] V ].IKD, 4) - d A ualnsus(D) - dtniiIrJ])))-
T.display(., d)f, =- T

0obj create
5' n1C7) - W,~ obj~reste(w, A, 1, p)) - [ogpdj*., 7) A soingp) A - 3S ]pfixS, 7) A reLcis*J(, 5)] A cLswc(, obW.create(, A, t, OR)

juMA LAT objcrste(u, k, 1, p)) -~ ss)T.obI.-snlA~w, k, 1, p)

cont-create
fM7 - (T.cont-create(, k, 1)) - Dogged4n(u, 7) A 3S jprefi(S, 1) A tfxste~, 7)) A ref..cw.(T, cont-crete(, k, 0)]1

)jilt7 A UT cont.,creste(m, A, If))] nftT cont-creste(, k, 0)

insert

0 A Contaiw*) A AS)., Insert, x,2, 1) A AS]., insert, y, 3,7) A mficau(T, Asert]., x, y, k)) A (k - I V 3sW., T, y, k - 1)I]

Inf3T) A LXT insert],, y, A))] - nf(T. insert]., -, Y,k0

remove
n L]? remove(m, xy, A)) - ]oitdins, ) A rfexista(x, 7)AAk > OA AS(,, remove, x,2, 7) AAS(, remnove, y, 3. )A comffy, T.x: k, 7) A rf-cu(T, rensov(,x, y, ))

]s.f(T) A UTrm5(,sy, A))] - ,,AT. rensove(., ., y, k))

"5 delete-ref
nih) - )UT. delete,.reth., r)) - ]1ggodJn(u, 7) A M.tw(?~m, 7) A AS]., delete-ref, r, 2, 7) A ref qase(i, deleera, r))]]

Inf(T) A UT delete,,ref(u, r))] - f(T.deieis..ret~u, r))

identify
d ~ f17) - W,]T ldentIf)y(u, N, f, )) []lgdjrn(., T)A dzvice(d)A user(N) A V' . userid Vf - desamnov Vf . scces-at Vf a rICOist Vf - roias]A Lsocure(T Identify]., N, f, d))]]

Inf(T A UT idtntilyha, N, 1,4))] -[ ]nfT. Identify(-, N, f, )) - VS VC [Ipr.AS. C, 7) A caiinane(C) - Identify A art(C, 2) *N A arg(C, 3) - f A .rg(C, 4) . 41 -
3R 3D (pfix~(S, R) A wig(b, 4) - d A ]]callnasnc(D) a Identify A .rgD, 2) - N A aeg(D. 3) p4f) V cailssme(D) - display]]

[nf(7) A UT Idenily], N,/f, d)) A 3S 3CfpssfxS. C, 7) A eailnare(C) a Identify A Ug(C, 2) = N A US4 C. 3) jIf A arg(C, 4) -d A -3R 3D Ipm~(S.C, R) A erg(D,4)=
d A I [.&(D, 2) a=N A can(D) -Identify A arg(D, 3) =f)V calnrarne(D)= display]] -1 T. IdentIfy(, I,f,d)~ T

Definitions of predicates

* Prefixes
pmfa(., 7)

- .Ip..fi.(S, 7)A T S.CR] - preeix(SC, 7)

pretax(S, 7) ] S =.V 3R 3CIS R RCA prefi(R, 7)]]

References
0 ,isso~wfo) A Yr 3k~direttjef(r]- 5k]

~.eficieffr) - efereece(r)

-.recer refreenoe], :A)

% ref.encefr) - ]dredjeff") V 3s3A ].efercnce~s) A ra sA]]~

Coreference
cfor, 7', r, 7)

wseir, T', s, R) - cosfij, R, r, 7)
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coref(r, 3', j, R) - Icortf(s, R. ,S) - oo.~r, T'. s, )1

callnamo1C) - Insert - fcotf~wSC, 2), , ag(C, 3) :ag(C, 4), T.C A 10 < k < sr&(C, 4) - orefar(C, 3) k, T', arg(C, 3) : k. T.C)1 A [1k > arg(C. 4) A rof-e7.isteg(C, 3)
k, ')j - cocf(rg(C, 3) :k, T. &(C, 3) :(k -1), TCQ

[1cl~uh*no)C) = deleLe-ref A w.~rg(C, 2), S, j : , 7)] V 1cu1nme(C) - remove A comfI.g(C, 3), S, arg(C, 2): .sg(C, 4), 1) A k arg(C 4) Asi arx(C 3)) - 0 < xs < k -

c .f 3' . ,s : ..,T.C))A LU..> AA nf.txisxsK:s, 7)1 - r,'s is ., T,, :(a - 1), T.C)1

[c.ah~a(C) #* delete..ref A cllna.me(C) #* Insert]- Icoef),, ', *5) - oef(r, 3', t, SC))

ccc,)),, T' j: k, 7) - 3C 3S [prtfix(S.C, 7) A c1ilnama(C) =Insert A wm~f(aUg(C, 2), S, , 1) A -cot~ug(C, 3), S, s, 7)1

part-of
cs.f(r, 3', j. 7) - psutof(', 1)

(pust-of(r, s, 7) A .rL ists(r k, 7)) - p.utoft, : k, j, 7)

Entities
VrV'T eVR [coveof~r, TsR) - E(r, 7) = E(s, R)j

Vr 7T) - y y = Er, 7)

entity-exs~t, 7) - Br x = El', 7)

enaty(x) - 33' by.-ests~, 7)

[entity(x) A entity(y) , Ix = y -. 3S 3T 3.1 32 )E(r1 , S) = xA E(r 2, 7) =y A costf(Fl, S, r2,7)11

Vx YT (entityexists(z, 7) - 3z (z = .v1se(x, 7) A stfing(z)ll

Basing References on Entities

r 'Vk Ve [mfcxigst* A, 7) A E),', 7) = # - based.c(r : k,e,)

VrVk Ve ).oenxs~r k , 7) A bnsed-os)r. t, 7)] - bsed-n(r : k,.7)

Potential Modification
.xq. i(S, T, x) - 3, 3r 2 jenbty(x)AE(rI, S) = xA EV 2 , 7) mxAVu~c Vk [AS(s, c, r1 ,k, S)- AS(u, c, r2, k, 7)A1CCR(rI, S) =True -CICl(r 2, D)A TY(x, S) =TY(x, 7)] A
value(', S) = vlue(x, 7) A 'V51 V$2s Icofn)), S. $2,7) - )partof~sj, rl,S) - pwtofts2, r2, 7)11 A CE(,1 , S) = CE(r2 , 7) A ((devic(FI) A device(,2 )1 - CD(r, . S) aCD(r2 , 7)11

s,~q-c(S, Ty) .) IS TA Vx'jx # y - vilue~, S) = v.I*w)s, 7)1

pjnodfy(C,, T, y) -3S IL(T.C) A ref xists(', 7) A entity,,oiss(y, 7) A S m3T A c~.erquiv(S, S.C, E(.', S)) A [y -E~r, 7) V 3S, 3S IS =S1 A a.Aquiv(Sl, S2, y) A
-. eequ'v(S2, 52 ,C, E(r, S2))])l

Security properties
~:~.c,()- [V, Vs Vk [H-(,, T', ,k) -CE(,, 7) < CE(,,7)] A VoYVVV, IIH(o T, r, k) A logednOu, o, 7)] CU~n, 7) : CE~r, 7)1 A Vo Vx[D(o, x, value, T)

Ds, . claxnfic~tnon, 7)) A Vu [RO(a, 3', r) -. R~u, T, r)] A Vo )Cf(o 7) > C(o, 7)))

.CCc(C) - Vk ).of.,.nce(arg(C, k)) -. AS~asg(C, 1), calnsm(C). arg(C, k),Ak, T) V 3, IRO(arg(C, 1), T,r) A AS~r, alnane(C), arg(C, k). ,A7)11

copy-secs.(T, C) -Vr'sy [pjnodify(C, r, T, y) - 3x Iy = E(z, 7) A CE(x, 7) < CE~r, 7)1

CCRSC,,(T, C) - V. V, Vs Vy [(3* r = arg(C, k) A bsd-o,r, y, 7) A 3s~y = E(s, 7) A CCR(s, 7) A p-modif(C, z, T., E(r, 7M1 - CUC.*, 7)> CE(r, 7))

transsecur(3', C) .- Vo Vs Vz Vu [)Ioggedin~m. o, 3' C) A dimsct-wefs) A D(o, , rectf, T C)) - Vs [3r 3k larg(C, k) =r A E(r, 7) =E(x, 7) A butdeonlr, z, 7) A E(s, 7)
sA CCR(s, 7))1 - CU(., 7) ! C 7))])I

rrL--cus(3, C) - Vu Vr Vk kefreowsc(arg(C, k)) - (CU(sg(C, 1)1,7)> CE(arg(C, K), 7) A [3s lbasecdon(arg(C, A), Els, 7)) A CCR.(s, 7)) CU~ug(C, 1), 7) 2! CE(s 7)111

Qscs(3,C .- )Vo V. [[Co, T) id GDo, T' C) 1 CU(x, 7) 4 CIJ~x, T. C) V '31 -.IR~x, T', I) =R(x, T. C, 71), - RO(as8 (C, 1), , sso)1 A (Yu 131 .(RO(a, T,1) =RO(v, 3'.C, 1)] -'4 [arag(C. 1) V RO(., 3', sseol]l

downgrad ecuo(, C)- ))-'cvics(x) A CE~, 7) > CE),, 3'.C)J - [IaIrane(C) down*grade A RO(asg(C 1), 3', downgrader))I

rcleasescwcT, C) .- )T(r, n) = RM - [T(,, T C) = RFN A Va )REO, 3', u) - RE]'. T C, a)]] A [(3')', 7) #d RM A T(r, 3'.C) = RM1 - [MEr, 3' C, a~g(C, 1)) A csalant(C)
* relesse A .,g(C, 2) r A RO(gW 1), 3'. mleas~r) A 3'],, 7) = DM1)l
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Other predicates
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CCR(r, 7) = True -3C 0 3R0 VCYR[ 1Ilnm(C) = ,eLCCR A petfix4R.C, 7) A cof(sr(C, 2), R, r,7)] - pecfi(R.C, R0.C0 )1 A arg(C, 3) - True]
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Additional Axioms for Normal Form and Legality
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